5.2 Instantaneous Frequency

Definition 5.9. The generalized sinusoidal signal is a signal of the form

$$
\begin{equation*}
x(t)=A \cos (\theta(t)) \tag{73}
\end{equation*}
$$

where $\theta(t)$ is called the generalized angle.

- The generalized angle for conventional sinusoid is $\theta(t)=2 \pi f_{c} t+\phi$.
- In [3, p 208], $\theta(t)$ of the form $2 \pi f_{c} t+\phi(t)$ is called the total instantaneous angle.

Definition 5.10. If $\theta(t)$ in (73) contains the message information $m(t)$, we have a process that may be termed angle modulation.

- The amplitude of an angle-modulated wave is constant.
- Another name for this process is exponential modulation.
- The motivation for this name is clear when we write $x(t)$ as $A \operatorname{Re}\left\{e^{j \theta(t)}\right\}$.
- It also emphasizes the nonlinear relationship between $x(t)$ and $m(t)$.
- Since exponential modulation is a nonlinear process, the modulated wave $x(t)$ does not resemble the message waveform $m(t)$.
5.11. Suppose we want the frequency f_{c} of a carrier $A \cos \left(2 \pi f_{c} t\right)$ to vary with time as in (72). It is tempting to consider the signal

$$
\begin{equation*}
A \cos (2 \pi g(t) t) \tag{74}
\end{equation*}
$$

where $g(t)$ is the desired frequency at time t.
Example 5.12. Consider the generalized sinusoid signal of the form 74 above with $g(t)=t^{2}$. We want to find its frequency at $t=2$.
(a) Suppose we guess that its frequency at time t should be $g(t)$. Then, at time $t=2$, its frequency should be $t^{2}=4$. However, when compared with $\cos (2 \pi(4) t)$ in Figure 38 a, around $t=2$, the "frequency" of $\cos \left(2 \pi\left(t^{2}\right) t\right)$ is quite different from the $4-\mathrm{Hz}$ cosine approximation. Therefore, 4 Hz is too low to be the frequency of $\cos \left(2 \pi\left(t^{2}\right) t\right)$ around $t=2$.

Figure 38: Approximating the frequency of $\cos \left(2 \pi\left(t^{2}\right) t\right.$) by (a) $\cos (2 \pi(4) t)$ and (b) $\cos (2 \pi(12) t)$.
(b) Alternatively, around $t=2$, Figure 38b shows that $\cos (2 \pi(12) t)$ seems to provide a good approximation. So, 12 Hz would be a better answer.

Definition 5.13. For generalized sinusoid $A \cos (\theta(t))$, the instantaneous frequency ${ }^{[23}$ at time t is given by

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t) \tag{75}
\end{equation*}
$$

Example 5.14. For the signal $\cos \left(2 \pi\left(t^{2}\right) t\right.$) in Example 5.12 ,

$$
\theta(t)=2 \pi\left(t^{2}\right) t
$$

and the instantaneous frequency is

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(2 \pi\left(t^{2}\right) t\right)=3 t^{2}
$$

In particular, $f(2)=3 \times 2^{2}=12$.
5.15. The instantaneous frequency formula (75) implies

$$
\begin{equation*}
\theta(t)=2 \pi \int_{-\infty}^{t} f(\tau) d \tau=\theta\left(t_{0}\right)+2 \pi \int_{t_{0}}^{t} f(\tau) d \tau \tag{76}
\end{equation*}
$$

[^0]
[^0]: ${ }^{23}$ Although $f(t)$ is measured in hertz, it should not be equated with spectral frequency. Spectral frequency f is the independent variable of the frequency domain, whereas instantaneous frequency $f(t)$ is a timedependent property of waveforms with exponential modulation.

